Senin, 24 November 2014

sem


Structural Equation Modeling (SEM)


Definisi
            Structural Equation Modellingatau yang lebih dikenal dengan singkatannya yaitu SEM. Metode SEM disebut juga metode Pemodelan Persamaan Struktural (PPS). Metode atau teknik PPS adalah suatu teknik statistic yang mampu menganalisis pola hubungan antara konstrak laten dan indikatornya, konstrak laten yang satu dengan lainnya, serta kesalahan pengukuran secara langsung. PPS dikelompokkan sebagai keluarga statistik multivariat dependen, artinya ada variabel dalam PPS yang berperan sebagai variabel dependen dan ada variabel yang berperan sebagai variabel independen. Istilah variabel dependen dalam PPS disebut variabel endogen dan istilah variabel independen dalam PPS disebut variabel eksogen. PPS memungkinkan peneliti untuk menguji hubungan antara variabel laten sekaligus dapat menguji teori. Selain itu, secara simultan, PPS juga dapat menguji indikator-indikatornya sehingga dapat menilai kualitas pengukuran. Dengan kata lain, PPS dapat digunakan untuk menguji model pengukuran yaitu pengukuran variable laten melalui indikator-indikatornya, dan model struktural yaitu pola hubungan antarvariabel yang ditampilkan dalam model. Teknik PPS memiliki dua tujuan utama dalam analisnya, yaitu menentukan apakah model riset yang digunakan “fit” (sesuai) berdasarkan data yang dimiliki, tujuan kedua adalah menguji berbagai hipotesis (pola hubungan) yang telah dibangun sebelumnya.
Adapun symbol-simbol yang digunakan dalam SEM:
ξ (ksi) = untuk variable laten X (eksogen)
η (eta) = untuk variable laten Y (endogen)
λ (lambda) =untuk muatan faktor (faktor loading)
β (beta) = koefisien pengaruh variable endogen terhadap variable endogen.
γ (gamma) = koefisien pengaruh variable eksogen terhadap variable endogen.
φ (phi) = koefisien hubungan antar variable laten X eksogen.
ζ (zeta) = peluang galat model
ε (epsilon) = kesalahan pengukuran pada variable manifest untuk variable laten Y
δ (delta) = kesalahan pengukuran pada variable manifest untuk variable laten X
λx (lambda besar) = matriks untuk muatan faktor variable laten X
λy (lambda besar) = matriks untuk muatan faktor variable laten Y
Persamaan dan Perbedaan antara SEM dan Analisis Jalur
            Analisis SEM pada dasarnya untuk memperoleh suatu model structural. Model yang diperoreh dapat digunakan untuk prediksi atau pembuktian model. Disamping itu, SEM juga dapat digunakan untuk melihat besar kecilnya pengaruh, baik langsung, tak langsung maupun pengaruh total variable bebas (variable eksogen) terhadap variable terikat (endogen).
            Antara SEM dan analisis jalur terdapat persamaan dan perbedaan. Beberapa persamaan dan perbedaan tersebut dapat dilihat pada deskripsi berikut.
Persamaan SEM dan Analisis Jalur:
  1.          Keduanya berkaitan dengan analisis konstruksi model.
  2.          Koefisien parameter model didasarkan atas analisis data sampel.
  3.       Pengujian kecocokan model dilakukan dengan cara membandingkan matriks varian-kovarian hasil dugaan dengan matriks data empiric (observasi)

Perbedaan SEM dan Analisis Jalur
  1.  Pada SEM dapat dilakukan dua analisis sekaligus yaitu: analisis pengujian hubungan kausal antar variable laten (model structural) dan analisis pengujian validitas dan reliabilitas yang didasarkan atas variable manifest (model pengukuran).
  2.  SEM dapat diterapkan untuk model rekursif ataupun resiprokal, sedangkan analisis jalur hanya dapat diterapkan pada model kausal satu arah dan rekursif.
  3.  SEM tidak terganggu dengan adanya korelasi antar kesalahan (error), sedangkan pada analisis jalur, antara error harus bebas (tidak saling tergantung).
  4. Hasil SEM mencangkup faktor diterminan, model structural, dan model penggukuran. Analisis jalur hanya mencakup faktor diterminan.

 
neurowise Ad
Trust Rating
Not Yet Rated
ardi-statistics.blogspot.com
Close

Tidak ada komentar:

Posting Komentar